Thiophosphate Based Superionic Conductors and Cathodes

Jagjit Nanda, Ethan Self, Frank Delnick

Email: nandaj@ornl.gov Phone: 865- 241-8361

Oak Ridge National Laboratory

2018 U.S. DOE Vehicle Technologies Office Annual Merit Review

June 12th, 2019 Project ID: BAT422

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Oct. 1, 2018
- Project end date: Sept. 30, 2021
- Percent complete: 30

Barriers

Performance: (i) Cell energy density, 500 Wh/Kg -1000 cycles (ii) Stable ionic conductivity > 10⁻⁴ S/cm at room temperature **Interfacial Stability:** Chemical and electrochemical stability 0 – 4.5 V wrt Li⁰/Li⁺

Current Density: 2 mA/cm² or higher

Budget

• FY19 Funding: \$ 400K

Partners/Collaborators

- Pacific Northwest National Laboratory Electron Microscopy
- SLAC SSRL
 Synchrotron X-ray diffraction, XANES
- Prof. Steve Greenbaum Hunter's College, New York NMR Studies

Impact

Relevance

High lithium-ion conducting solid electrolytes with stable interfaces are critical to the development of all solid state batteries that meets EV goals in terms of energy density and life.

Objectives

- Synthesis and fabrication of lithium thiophosphate based superionic conductors and evaluate their electrochemical and chemical stability.
- Synthesis of high capacity cathodes based on sulfur catenation to a solid polymeric thiophosphates ionic conducting framework.
- Cathode-Solid Electrolyte Interfaces :
- (i) Optimizing and reduce the area specific resistance (ASR) between thiophosphate solid electrolyte (SE) and a working lithium-ion cathode (soft-hard interface).
- (ii) Meet the electrochemical stability and critical current density goals for all solidstate batteries

Relevance to VTO Mission

R&D effort on solid state electrolytes and interfaces are critical to meet the VTO's long term goal of attaining cell energy density \geq 500 Wh/Kg and 1000 EV cycles.

Milestones

Due Date	Description	Status
12/31/2018 (Q1)	Undertake synthesis and structural characterization of two lithium thiophosphate and related class of superionic conductors based on Li-P-S phase diagram.	Complete
03/31/2019 (Q2)	Attain lithium-ion conductivity in the range of 10 ⁻⁴ S/cm at room temperature by optimizing the synthesis method, dopant concentration and surface properties.	Complete
06/30/2019 (Q3)	Complete characterization and evaluation of the reaction passivation layer at Li-metal interface by undertaking AC impedance and DC polarization test in symmetric cells.	In progress
09/30/2019 (Q4)	Complete characterization and evaluation of the reaction passivation layer at cathode interfaces by undertaking AC impedance and DC polarization test in symmetric cells as well as Li-ion cathodes.	In progress

Approach/Strategy

Lithium thiophosphate (Li-P-S) class of solid electrolytes have certain unique advantages

- Superionic ion conductivity (> 10⁻⁴ S/cm) at room temperature
- Mechanically Soft : Good wettability with lithium metal and processable
- Earth abundant and potentially lower cost

Most of the three-component compounds are on the $\text{Li}_2\text{S} - \text{P}_2\text{S}_5$ tie-line with P⁺⁵ oxidation state, P is coordinated to S as isolated tetrahedra or with edge or corner sharing tetrahedra

Li₇PS₆ and Li₇P₃S₁₁ can be written as Li₃PS₄*2(Li₂S) and Li₃PS₄*Li₄P₂S₇ to emphasize phosphorus coordination and stoichiometric relations. These notations do not denote mixtures of two phases.

Prior ORNL work demonstrated high capacity cathodes by catenation of sulfur on to thiophosphate phases as described by the phase diagram

Catenation of 2, 3, 5, 6 and 8 sulfur atoms onto Li₃PS₄ electrolyte^[1-2]

- Only the catenated sulfur is electrochemically active
- Capacity and cycle life limited by Li₂S formed during discharge

^[1] Lin, Liu, Fu, Dudney, Liang, Angew. Chem. 2013, 125, 7608-7611.

^[2] Liang, Dudney, Lin, Liu, US Patent No. 9,466,834 B2, 2016.

Technical Accomplishment

A model thiophosphate solid electrolyte (Li₃PS₄, LPS) was prepared using a solution-based synthesis route

Synthesis Details:

- Ball-mill Li₂S + P₂S₅ in THF
- Centrifuge and decant supernatant
- Dry Li₃PS₄ solid at 140°C under vacuum
- All work performed under argon

- Li₃PS₄ with/without coordinated THF have different structures. Heating at 140°C removes coordinated THF
- 7 2. Li₃PS₄ product is phase-pure with no residual Li₂S/P₂S₅ precursors

Li₃PS₄ exhibits superionic Li⁺ conductivity (e.g., 1.5 x 10⁻⁴ S/cm at 23°C) as determined from both blocking and non-blocking electrode

configurations.

Conductivity Cell Configuration

Blocking (C-coated AI) or Non-Blocking Electrodes (Li)

Pressure (MPa)	Pellet Density (g/cm³)	Relative Density*
190	1.29	0.69
380	1.60	0.86
560	1.65	0.88

^{*} Calculated from theoretical density of Li₃PS₄ (1.87 g/cm³)

Technical Accomplishment

A Li/Li₃PS₄/Li solid-state cell was designed and tested to identify appropriate current densities and areal capacities to be used for characterizing high capacity thiophosphate cathodes.

AC impedance measurements indicate Li₃PS₄ oxidizes at potentials > 2.6 V vs. Li/Li⁺. Stable cathode/electrolyte interfaces are critical for all-solid-state batteries.

Experimental Details

- Asymmetric Cell: Li/Li₃PS₄/C (E_{oc} = 2.21 V)
- Polarize C electrode (2.21 3.71 V vs. Li/Li+) and measure AC impedance

 $\begin{array}{ccc} & & & \\ &$

Measured decomposition potential (2.6V) in excellent agreement with recent modeling and experimental reports^[1-2]

^[1] W. D. Richards et al. Chem. Mater. 2016, 28, 266-273.

^[2] T. Hakari et al. J. Power Sources 2015, 293, 721-725.

Technical Accomplishment

A new synthesis route to produce PEO/Li₃PS₄ composite solid electrolytes was explored. Further optimization of the composition and synthesis conditions is required to achieve suitable ionic conductivity.

Li₃PS₄ + PEO Synthesis Details:

- Ball-mill Li₂S + P₂S₅ + polyethylene oxide (PEO, 600 kDa in acetonitrile
- Centrifuge and decant supernatant
- Dry solid overnight at 25 140 °C
- All work performed under argon
- Target composition: 56 wt% PEO, 44 wt% Li₃PS₄

PEO matrix inhibits crystallization of Li₃PS₄ even at 140 °C

Intensity / Arbitrary Units

In our approach we propose catenation of S to (PS₃)⁻¹ to extend the capacity of the thiophosphate cathodes.

We have identified 3 new cathode compositions. Li(PS₃)S₃, Li(PS₃)S₁ are specifically chosen to ensure they don't form Li₂S during discharge which could lead to capacity degradation

Sulfur can be catenated onto LiPS₃ to yield new crystalline thiophosphates with potentially useful electrochemical properties

- 1. Catenating S onto LiPS₃ yields crystalline Li₃PS_{3+x} compounds
- 2. Resulting structure is sensitive to thermal annealing conditions and solvent
- 3. In FY20, synchrotron XRD will be used to solve structure of new phases

Several amorphous LiPS₃•S_x phases have also been prepared. Structural and electrochemical investigations of these new materials are underway.

Raman spectroscopy provides insights into structure of <u>amorphous</u> LiPS₃•S_x compounds

- Calcination temperature must be optimized for each composition to remove coordinated solvent without causing sulfur loss and/or thermal decomposition
- 2. Future work will investigate how glassy structure and coordinated solvent affect ionic conductivity.

Response to Reviewers Comments

New project started in FY 19: Not reviewed

Collaborations and Coordination with Other Institutions

Electron Microscopy Dr. Chongmin Wang

TXM-XANES and Soft X-ray Absorption Dr. Yijin Liu and Johanna Weker

Nuclear Magnetic Resonance (NMR) Studies Prof. Steve Greenbaum

Remaining Barriers and Challenges

- Determine how sulfur catenation affects the ionic conductivity of LiPS_{3+x} phases.
- Establish optimal synthesis conditions (solvent, annealing time/temperature, etc.)
 to maximize the ionic conductivity of new Li-P-S phases.
- Determine how glassy structure and coordinated solvent affect ionic conductivity of amorphous Li-P-S phases.
- Reduce the interfacial resistance between the active material and ionically conductive medium (e.g., Li₃PS₄ or PEO+LiTFS) in composite cathodes for allsolid-state batteries
- Identify high energy density cathodes which form kinetically-stabilized interfaces with Li₃PS₄ (thermodynamically unstable at potentials > 2.6 V vs. Li/Li⁺).

Any proposed future work is subject to change based on funding levels

Proposed Future Research

- 1. Optimize the ionic conductivity and stability of lithium thiophosphate solid electrolytes. Specific experiments will incorporate: (i) **halide dopants** (e.g., I⁻) and/or (ii) barrier layers (e.g., LiNbO₃) to improve the ionic conductivity and interfacial stability of Li₃PS₄. FY19 3rd and 4th Qtr.
- 2. Establish structure-performance correlations for lithium thiophosphate solid electrolytes. Use neutron and synchrotron X-ray diffraction to solve the structure of new crystalline Li-P-S phases. Use neutron pair-distribution functions (PDF) to understand the local structure of amorphous, glassy phases. FY 20
- 3. Construct and test all-solid-state batteries containing superionic sulfide solid electrolytes and high energy density cathodes (e.g., S, FeS₂, and LiMO₂). Study the formation and stability of passive films formed at the cathode/electrolyte interface during battery operation. FY19 4th Qtr. and FY 2020

Technical Approach:

Summary

Catenate sulfur onto LiPS₃ to produce new crystalline and amorphous Li-P-S solid-state electrolytes and cathodes

- Targeted stoichiometries driven by ternary phase diagram
- Utilized a suite of characterization methods (e.g., XRD) and Raman spectroscopy) to understand how synthesis conditions affect structure of Li-P-S phases

Composite Cathode

Li₃PS₄ Pellet

Accomplishments:

- Established a solution precipitation routes to synthesize a range of Li-P-S phases
- Synthesized a model sulfide electrolyte Li₃PS₄ with superionic conductivity (1.5 x 10⁻⁴ S/cm at room temperature)
- Identified oxidative stability limit for Li₃PS₄ (2.6 V vs. Li/Li⁺) using AC impedance spectroscopy

Ongoing work:

- Optimize synthesis and processing conditions for new Li-P-S phases
- Study cathode/electrolyte interfaces in allsolid-state batteries (e.g., Li/Li₃PS₄/LiFePO₄)
- Develop composite polymer/sulfide solid electrolytes to improve processability

Technical Back-up Slides

Technical Accomplishment

Preliminary experiments on all-solid-state Li/Li₃PS₄/LiFePO₄ batteries indicate performance is limited by cathode/electrolyte interfacial contact. Future work will focus on optimizing cell configuration and cathode composition.

Solid-State Cell Configuration

